Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Moamen S. Refat, ${ }^{\text {a }}$ Hamdy Al-Didamony Ahmed, ${ }^{\text {b }}$ Lamia A. El-Zayat, ${ }^{\text {a }}$ Takeo Fukunaga ${ }^{\mathrm{c}}$ and Hiroyuki Ishida ${ }^{\mathrm{c} *}$

${ }^{\text {a }}$ Chemistry Department, Faculty of Education, Suez Canal University, Port Said, Egypt,
${ }^{\text {b }}$ Chemistry Department, Faculty of Science,
Zagazig University, Egypt, and ${ }^{\text {c }}$ Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan

Correspondence e-mail:
ishidah@cc.okayama-u.ac.jp

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.033$
$w R$ factor $=0.083$
Data-to-parameter ratio $=11.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(piperidinium) chloranilate

In the title crystal structure, $2 \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}^{+} \cdot \mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4}{ }^{2-}$, chloranilate and piperidinium ions are connected by bifurcated N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, giving a centrosymmetric chlorani-rate-piperidinium 1:2 unit. The 1:2 units are connected to each other by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a molecular ladder. There is a centre of symmetry at the centre of the anion ring.

Comment

Crystal structures in the chloranilic acid (2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone)-secondary amine system have been analyzed for $1: 1$ salts of morpholine (Ishida \& Kashino, 1999), diethylamine (Ishida \& Kashino, 2000), piperidine (Fukunaga \& Ishida, 2003) and 1,2,3,4-tetrahydroquinoline (Ishida, 2004b), and for a 1:2 salt of pyrrolidine (Ishida, 2004a). In the present study, we have prepared the 1:2 salt (I) and determined its crystal structure at 100 K in order to extend the previous studies.
2

(I)

In the crystal structure of (I), the asymmetric unit is composed of $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}^{+} \cdot 0.5 \mathrm{C}_{6} \mathrm{O}_{4} \mathrm{Cl}_{2}{ }^{2-}$, and an acid-base interaction involving proton transfer is observed between chloranilic acid and piperidine (Fig. 1). There is a centre of symmetry at the centre of the anion ring. The chloranilate and piperidinium ions are connected by asymmetric bifurcated

Figure 1
View of (I), with the atom labelling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are indicated by dashed lines (the symmetry code is as in Table 1).

Figure 2
Packing view of (I), showing a ladder along the a axis. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are indicated by dashed and dotted lines, respectively (the symmetry codes are as in Table 2).
$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) to give a centrosymmetric chloranilate-piperidinium 1:2 unit. Within the unit, there is also a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. The 1:2 units are connected by other $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a ladder running parallel to the a axis. The packing scheme is similar to that found in bis(pyrazolium) chloranilate (Ishida \& Kashino, 2001) and bis(3-methylpyrazolium) chloranilate (Ishida, 2004c), but quite different from that in bis(pyrrolidinium) chloranilate (Ishida, 2004a), where the two cations and one anion are arranged in an alternating manner to form a tape.

Experimental

To a solution of piperidine ($85 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{ml})$, a solution of chloranilic acid ($209 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{OH}(25 \mathrm{ml})$ was added at room temperature. The solution was allowed to evaporate slowly at room temperature. Dark-red crystals of (I) suitable for X-ray diffraction were formed, filtered off and dried under vacuum.

Crystal data

$$
\begin{aligned}
& 2 \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}^{+} \cdot \mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4}{ }^{2-} \\
& M_{r}=379.28 \\
& \text { Triclinic, } P \overline{1} \\
& a=5.1239(3) \AA \AA \\
& b=8.7058(7) \AA \\
& c=10.4508(7) \AA \\
& \alpha=114.42(3)^{\circ} \\
& \beta=95.561(2)^{\circ} \\
& \gamma=95.070(3)^{\circ}
\end{aligned}
$$

Data collection

$$
\begin{aligned}
& V=418.25(5) \AA^{3} \\
& Z=1 \\
& D_{x}=1.506 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.41 \mathrm{~mm}^{-1} \\
& T=100(2) \mathrm{K} \\
& \text { Prism, dark red } \\
& 0.28 \times 0.15 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Rigaku R-AXIS RAPID II
\quad diffractometer
ω scans
Absorption correction: multi-scan
$\quad(A B S C O R ;$ Higashi, 1995)
$\quad T_{\min }=0.781, T_{\max }=0.968$

Rigaku R-AXIS RAPID II
difractometer
Absorption correction: multi-scan
$T_{\min }=0.781, T_{\max }=0.968$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0364 P)^{2}\right. \\
& \quad+0.1379 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.38 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.083$
$S=1.08$
1838 reflections
158 parameters
All H -atom parameters refined

Table 1
Selected bond lengths (\AA).

$\mathrm{Cl} 1-\mathrm{C} 2$	$1.7466(16)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.494(2)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.2372(19)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.423(2)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.2662(18)$	$\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$	$1.545(2)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.493(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.389(2)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	$0.88(2)$	$2.13(2)$	$2.8045(19)$	$133.1(17)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.88(2)$	$2.20(2)$	$2.9929(19)$	$150.7(17)$
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O}^{2 i}$	$0.86(2)$	$1.98(2)$	$2.8070(19)$	$162(2)$
$\mathrm{C}^{\mathrm{H}}-\mathrm{H} 9 \cdots \mathrm{O}^{2}$	$0.99(2)$	$2.59(2)$	$3.349(2)$	$133.5(17)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+2,-y+1,-z+1$.

H atoms were located in a Fourier map and refined isotropically; $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ bond lengths are in the range $0.86(2)-0.88$ (2) \AA and 0.95 (2)-1.01 (2) \AA, respectively.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

This work was partly supported by a Grant-in-Aid for Scientific Research (C) (No. 16550014) from the Ministry of Education, Science, Sports and Culture of Japan.

References

Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fukunaga, T. \& Ishida, H. (2003). Acta Cryst. E59, o1793-o1795.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Ishida, H. (2004a). Acta Cryst. E60, o974-o976.
Ishida, H. (2004b). Acta Cryst. E60, o1674-o1676.
Ishida, H. (2004c). Acta Cryst. E60, o2506-o2508.
Ishida, H. \& Kashino, S. (1999). Acta Cryst. C55, 1923-1926.
Ishida, H. \& Kashino, S. (2000). Acta Cryst. C56, e202-e204.
Ishida, H. \& Kashino, S. (2001). Acta Cryst. C57, 476-479.
Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure (Version 3.7.0). Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

